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Abstract 32	

Prosocial behaviors are hypothesized to require socio-cognitive and empathic abilities—33	

engaging brain regions attributed to the mentalizing and empathy brain networks. Here, we 34	

tested this hypothesis with a coordinate-based meta-analysis of 600 neuroimaging studies on 35	

prosociality, mentalizing and empathy (~12,000 individuals). We showed that brain areas 36	

recruited by prosocial behaviors only partially overlap with the mentalizing (dorsal posterior 37	

cingulate cortex) and empathy networks (middle cingulate cortex). Additionally, the 38	

dorsolateral and ventromedial prefrontal cortices were preferentially activated by prosocial 39	

behaviors. Analyses on the functional connectivity profile and functional roles of the neural 40	

patterns underlying prosociality revealed that in addition to socio-cognitive and empathic 41	

processes, prosocial behaviors further involve evaluation processes and action planning, likely 42	

to select the action sequence that best satisfies another person’s needs. By characterizing the 43	

multidimensional construct of prosociality at the neural level, we provide insights that 44	

may support a better understanding of normal and abnormal social cognition (e.g., 45	

psychopathy). 46	

  47	
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Introduction 48	

Prosociality refers to behaviors that are intended to benefit others at a cost to the self (de 49	

Waal, 2008; Jensen, 2016). Prosocial behaviors comprise a broad range of acts, which 50	

include caring, sharing, donating, helping, and volunteering (Dovidio, 2001; Padilla-51	

Walker and Carlo, 2014; Penner et al., 2005). Three aspects are central to prosocial 52	

behaviors: (i) an agent intentionally carries out an act (ii) to benefit others (iii) without 53	

selfish motivations—as personal gains are an unintended by-product and not the goal of 54	

the prosocial act (Batson, 1987; Batson et al., 1981; Jensen, 2016). Previous research has 55	

suggested that these behaviors represent a broad and multidimensional construct 56	

constituted of cognitive and motivational processes (Coke et al., 1978; Padilla-Walker and 57	

Carlo, 2014). 58	

Socio-cognitive abilities (e.g., mentalizing) are required for prosocial acts to 59	

understand another person’s needs, infer goals across variable and novel contexts, and 60	

recognize when to engage in helping behavior (Warneken, 2015). Humans support those 61	

who are in need and ask for help, and they are more likely to do so if the latter are friends 62	

or ingroup members (Abrams et al., 2015; Warneken and Tomasello, 2009b; Weller and 63	

Hansen Lagattuta, 2013; Young et al., 1999). Prosocial acts require these abilities because 64	

they presuppose representations of self- and other-related intentions and goals (Batson, 65	

1991; Brownell et al., 2006; Smiley, 2002), and ontogenetic evidence indicates that the 66	

development of complex prosocial behaviors is concomitant with the refinement of 67	

mentalizing abilities (Abrams et al., 2015; Eisenberg et al., 2015; Warneken and 68	

Tomasello, 2009a). 69	

Further, the motivation to help (e.g., empathic concern) is required to resonate with 70	

the other’s needy situation and to be motivated to see the other’s needs satisfied (Dovidio 71	

and Penner, 2007). Such motivation has been proposed to be an evolutionary outcome of 72	

empathy (de Waal, 2008; Rumble et al., 2009; Xu et al., 2018). Humans exhibit empathic 73	
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concerns about the welfare of others (Batson, 2011) and based on these concerns, they feel 74	

committed to alleviate others’ distress and pain (de Waal, 2008; Warneken, 2015; 75	

Warneken and Tomasello, 2009a). 76	

Building on this evidence, a qualitative review of the neuroimaging literature has 77	

proposed a set of brain regions that are likely involved in prosociality (Chakroff and 78	

Young, 2014). On the one hand, socio-cognitive abilities are instantiated in brain areas 79	

broadly associated with the mentalizing network (Bzdok et al., 2012) to support processes 80	

that lead to the recognition of another person’s needs and the circumstances in which 81	

prosocial behaviors are appropriate. Candidate regions involve brain areas previously 82	

implicated in social trait attributions and social event knowledge, such as the posterior 83	

cingulate cortex (PCC) and medial prefrontal cortex (mPFC) (Hackel et al., 2015; Krueger 84	

et al., 2009; Mitchell et al., 2009; Murray et al., 2012). On the other hand, the motivation 85	

for a prosocial act is instantiated in brain regions broadly associated with the empathy 86	

network (Bzdok et al., 2012; Fan et al., 2011) to support processes that lead to identifying 87	

oneself with another person’s needy situation and thus to the emergence of empathic 88	

concerns (Chakroff and Young, 2014). Brain regions like the middle cingulate cortex 89	

(MCC) and anterior insula (AI) might play a central role given their involvement in 90	

vicarious affective experiences (e.g., pain, disgust, and distress) that promote empathic 91	

concern (Corradi-Dell'Acqua et al., 2016; Fan et al., 2011). 92	

One limitation of the current literature is that brain regions involved in prosociality 93	

have been inferred from task-based functional MRI (fMRI) investigations of single 94	

prosocial behaviors (Hackel et al., 2015; Karns et al., 2017; Moll et al., 2006; Park et al., 95	

2017). Evidence of the common neural network underlying all these prosocial acts is still 96	

lacking. Further, small sample sizes and analytic flexibility (combined with publication 97	

bias) pertain to other concerns for individual fMRI studies (Feredoes and Postle, 2007; 98	

Raemaekers et al., 2007). Moreover, even though a recent comparative meta-analysis has 99	
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provided preliminary evidence for the involvement of the mPFC in giving behaviors 100	

(Cutler and Campbell-Meiklejohn, 2019), it is still unclear to which extent the neural 101	

underpinnings of other prosocial behaviors are part of the mentalizing and empathy brain 102	

networks hypothesized to be involved in those very behaviors. Because prosociality is 103	

such a composite and multidimensional construct, a quantitative meta-analysis of the 104	

neuroimaging evidence on its components might be the most suitable means to unearth its 105	

neural underpinnings. 106	

Here, we aimed at testing the presence of the above-mentioned cognitive and 107	

motivational modules of prosocial behaviors at the neural level and whether there are brain 108	

patterns preferentially associated with prosociality. As prosocial behaviors imply carrying out 109	

actions that help others, brain regions associated with action-outcome evaluations and action 110	

planning might be involved as well. We performed a quantitative meta-analysis implementing 111	

the activation likelihood estimation (ALE) algorithm (Eickhoff et al., 2009) and meta-analytic 112	

connectivity analyses to identify the meta-analytic neural profile of prosociality, mentalizing, 113	

and empathy, and examined their convergences and divergences. Finally, to characterize the 114	

functions of the emerging neural patterns, we employed functional decoding (FD) analyses 115	

(Eickhoff et al., 2017). 116	

 117	

Methods 118	

ALE meta-analyses 119	

Literature search and selection. In this work, we performed three meta-analyses to identify 120	

meta-analytic brain regions consistently engaged by (1) prosociality, (2) mentalizing, and (3) 121	

empathy. A systematic online database search was performed on PubMed and Google Scholar 122	

by entering various combinations of relevant search items referring to behaviors that the 123	

literature had identified as prosocial behaviors. The following keywords were used for the 124	
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meta-analysis on prosociality: ‘generosity’, ‘altruism’, ‘cooperation’, ‘charity’, ‘donation’, 125	

‘prisoner’s dilemma’, ‘prosocial’, ‘prosociality’, ‘altruistic behavior’, ‘prosocial behavior’, 126	

‘dictator game’, ‘fMRI’, ‘magnetic resonance imaging’, and ‘neuroimaging’, ‘PET’, ‘positron 127	

emission tomography’. 128	

The meta-analyses on empathy and mentalizing were built on previous meta-analyses 129	

(Bzdok et al., 2012; Fan et al., 2011; Lamm et al., 2011). Given the massive number of new 130	

studies on empathy and mentalizing since those meta-analyses, we decided to update this 131	

previous work and test whether those results still hold with the new investigations added 132	

to the literature. Hence, our work directly builds on those previous meta-analyses (by 133	

including the experiments they analyzed) and aims to replicate and extend their results 134	

with a larger dataset including the newer studies from the literature, which provides 135	

more robust results. Keywords for empathy were as follows: ‘empathy’, ‘empathic’, ‘fMRI’, 136	

‘magnetic resonance imaging’, and ‘neuroimaging’, ‘PET’, ‘positron emission tomography’. 137	

Keywords for mentalizing were as follows: ‘mentalizing’, ‘theory of mind’, ‘perspective 138	

taking’, ‘false belief’, ‘fMRI’, ‘magnetic resonance imaging’, and ‘neuroimaging’, ‘PET’, 139	

‘positron emission tomography’. 140	

Also, we explored several other sources for all meta-analyses, including (a) the 141	

BrainMap database (http://brainmap.org), (b) work cited in review papers, and (c) direct 142	

searches on the names of frequently occurring authors. The studies were considered for the 143	

meta-analysis if they met the following criteria: (i) participants were free from psychiatric or 144	

neurological diagnoses; (ii) participants were adults; (iii) no pharmacological modulations 145	

were reported; (iv) fMRI was used as the imaging modality (no PET studies were found under 146	

the searched terms); (v) participants underwent a task in which they made a prosocial decision 147	

(only for prosociality); (vi) the prosocial decision implied some costs and was not exclusively 148	

advantageous to the participants (only for prosociality); (vii) whole-brain analyses were 149	

applied (excluding region of interest [ROI] analyses); (viii) fMRI results were derived from a 150	
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general linear model based on either a binary contrast or parametric analyses in within-subject 151	

comparisons; and (ix) activations were presented in a standardized stereotaxic space 152	

(Talairach or Montreal Neurological Institute, MNI). Note that Talairach coordinates were 153	

converted into MNI space using the GingerALE software (https://www.brainmap.org/ale/) 154	

with Brett’s algorithm. 155	

 156	

ALE algorithm. To determine the brain regions consistently activated across the identified 157	

studies, we employed a coordinate-based meta-analytic approach using the ALE algorithm 158	

(in-house MATLAB 2016b scripts) (Eickhoff et al., 2009). ALE determines the convergence 159	

of foci reported from different functional neuroimaging studies with coordinates of peak 160	

activations in standardized space (Laird et al., 2005; Turkeltaub et al., 2002). Foci are 161	

interpreted as spatial probability distributions. Their widths are based on empirical estimates 162	

of the spatial uncertainty based on between-subject and between-template variability of the 163	

neuroimaging data (Eickhoff et al., 2009). The sample sizes of the studies reporting the foci 164	

are used to weight the between-subject variability. Thereby, the ALE algorithm presupposes a 165	

more reliable approximation to the ‘true’ activation for larger sample sizes, which are 166	

modeled with smaller Gaussian distributions (Eickhoff et al., 2009). 167	

An ALE map is obtained by calculating the union of the individual modulated 168	

activation maps created from the maximum probability associated with anyone's focus 169	

(always the closest one) for each voxel (Turkeltaub et al., 2012). This ALE map is determined 170	

against a null-distribution of random spatial association between studies employing a non-171	

linear histogram integration algorithm (Eickhoff et al., 2012; Turkeltaub et al., 2012). 172	

Significant results were assessed at a cluster-level family-wise error (cFWE) correction at p < 173	

0.05 with a cluster defining threshold of p < 0.001 and 10,000 permutations (Eickhoff et al., 174	

2012; Eklund et al., 2016). To meet the criteria of robust unbiased results, clusters were 175	

considered significant only if the most dominant experiment contributed to the significant 176	
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cluster on average less than 50%, and the two most dominant experiments contributed, on 177	

average less than 80% (Bellucci et al., 2017; Bellucci et al., 2018; Eickhoff et al., 2016). 178	

Experimental contributions were represented by the fraction of the ALE value accounted for 179	

by each experiment contributing to the significant cluster. This average non-linear 180	

contribution to the ALE value was computed from the ratio of the ALE values at the location 181	

of the cluster with and without each contributing experiment (Eickhoff et al., 2016). 182	

The following number of experiments, foci, and subjects were found for our three 183	

meta-analyses: prosociality had 67 experiments, 433 foci, 1,642 subjects (i.e., an average of 184	

24.7 subjects per experiment; see Supplementary list of study for prosociality); empathy had 185	

273 experiments, 3,267 foci, 5,485 subjects (an average of 21.3 subjects per experiment; see 186	

Supplementary list of study for empathy); and mentalizing had 240 experiments, 2,483 foci, 187	

4,867 subjects (an average of 21.3 subjects per experiment; see Supplementary list of study for 188	

mentalizing). 189	

 190	

Contrast and conjunction of ALE results. To investigate differences and convergences 191	

between the meta-analytic results for prosociality, empathy and mentalizing, two contrast and 192	

conjunction analyses were performed. Contrast analyses were based on voxelwise differences 193	

of the Z-scores obtained from the ALE maps. Significance was tested with a permutation test. 194	

Thereby, the experiments of each meta-analysis were pooled and randomly divided into 195	

two groups of the same size as the two original datasets. The ALE scores of these two 196	

randomly generated groups were voxelwise subtracted from each other to generate a map of 197	

ALE score differences. This procedure was repeated 10,000 times, yielding an empirical null-198	

distribution of maps of ALE score differences. Finally, the ALE maps of ‘true’ differences 199	

were thresholded at a posterior probability of p > 95%. Conjunction analyses were performed 200	

by computing a minimum conjunction with a cFWE < 0.05 and a voxelwise, cluster-forming 201	

threshold of p < 0.001 (Nichols et al., 2005). 202	
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 203	

Meta-analytic functional profiles 204	

Task-free resting-state functional connectivity analysis. Task-free resting-state functional 205	

connectivity (RSFC) of the prosociality brain regions was estimated from fMRI images of 206	

192 healthy volunteers from the Enhanced Nathan Kline Institute – Rockland Sample, who 207	

underwent a resting-state scan right before which they were instructed to look at a fixation 208	

cross, not to think of anything in particular and not to fall asleep (Nooner et al., 2012). The re-209	

analysis of the data was approved by the local ethics committee of the Heinrich-Heine 210	

University in Düsseldorf. Functional images were acquired with a Siemens TimTrio 3T 211	

scanner using a gradient-echo, echo-planar imaging (EPI) pulse sequence (repetition time = 212	

1.4s; echo time = 30 ms, flip angle = 65, voxel size = 2.0 × 2.0 × 2.0 mm; number of slices = 213	

64). 214	

After minimal preprocessing (unwrap and realign), FIX (FMRIB's ICA-based 215	

Xnoiseifier, version 1.061 as implemented in FSL 5.0.9) (Griffanti et al., 2014; Salimi-216	

Khorshidi et al., 2014) was used to remove physiological and movement artifacts by 217	

decomposing the data into independent components and identifying noise components with 218	

the help of a large number of distinct spatial and temporal features via pattern classification. 219	

Unique variance related to the artefactual independent components was regressed from the 220	

data together with 24 movement parameters (including derivatives and second-order effects as 221	

previously described and evaluated) (Satterthwaite et al., 2013). After having excluded the 222	

first four scans, functional images were preprocessed using SPM8 (Wellcome Trust Centre for 223	

Neuroimaging, London) and in-house MATLAB scripts as follows: functional images were 224	

corrected for head movement using a two-pass affine registration (alignment to the initial 225	

volume followed by alignment to the mean after the first pass); the mean image was then 226	

spatially normalized to the ICBM-152 reference space using the “unified segmentation” 227	

approach (Ashburner and Friston, 2005); using the resulting deformation parameters, the 228	
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individual functional images were subsequently smoothed with a 5-mm full width at half 229	

maximum Gaussian kernel to improve the signal-to-noise ratio and compensate for residual 230	

anatomic variations. The time-course of each seed was extracted by computing the first 231	

eigenvariate of the time-series of all voxels within 5 mm of the seed coordinates. 232	

To reduce spurious correlations, variance explained by the mean white matter 233	

and cerebral spinal fluid signal were removed from the timeseries, which was then band-234	

pass filtered with a filter ranging between 0.01 and 0.08 Hz. Afterwards, the functional 235	

connectivity profile of each seed was estimated by correlating each seed’s timeseries with 236	

the timeseries of all other gray-matter voxels across the brain (Pearson correlation). 237	

Correlation coefficients were transformed into Fisher's z-scores, which were entered in a 238	

second-level ANOVA for group analysis, including age and sex as covariates of no interest. 239	

The data was then subjected to non-parametric permutation-based inference and cluster-level 240	

thresholded at p < 0.05 to correct for multiple comparisons. 241	

 242	

Task-based meta-analytic connectivity mapping. The task-based co-activation profile of each 243	

prosociality brain region was estimated employing task-based meta-analytic connectivity 244	

mapping (MACM), which uses patterns of co-activations reported in standardized space by 245	

neuroimaging studies in the BrainMap database (http://www.brainmap.org/) (Laird et al., 246	

2009; Langner et al., 2014) and related to activations of between-condition differences from 247	

whole-brain neuroimaging contrasts in healthy individuals. Studies including between-group 248	

differences (e.g., age, sex or handedness), effects of interventions (e.g., pharmacological or 249	

training-based), and clinical populations were excluded. 250	

We used a 5-mm radius around the peak coordinates of the meta-analytic clusters 251	

from the prosociality meta-analysis (i.e., of the four prosociality brain regions). The 252	

following experimental contrasts, number of foci and participants were identified for each 253	

prosociality brain region: dlPFC (96 experimental contrasts; 1,356 foci; 1,417 participants), 254	
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dPCC (117 experimental contrasts; 1,415 foci; 1,749 participants), vmPFC (245 experimental 255	

contrasts; 2,862 foci; 3854 participants), and MCC (404 experimental contrasts; 5,806 foci; 256	

5,896 participants). Whole-brain peak coordinates of all those studies from BrainMap that 257	

reported at least one focus of activation within the respective seeds were downloaded. 258	

Coordinates were then analyzed with the ALE algorithm to detect areas of convergence of co-259	

activations with the two seeds. Finally, the ALE maps were thresholded at p < 0.05 cluster-260	

level corrected (voxelwise, cluster-forming threshold: p < 0.001) and converted into z-scores 261	

for display. 262	

 263	

Conjunction of meta-analytic connectivity profiles. To determine the robustly interconnected 264	

areas from the task-free and task-based meta-analytic connectivity profiles of prosociality, a 265	

conjunction analysis was performed using the minimum conjunction of the previous 266	

functional connectivity results thresholded with a cFWE < 0.05 and a voxelwise, cluster-267	

forming threshold of p < 0.001 (Nichols et al., 2005). To further single out brain areas that 268	

were engaged exclusively by prosociality and neither mentalizing nor empathy, two exclusive 269	

conjunctions were conducted between the extended prosociality network and both mentalizing 270	

and empathy brain regions identified in the previous ALE analysis. The union of these 271	

exclusive maps yielded overlapping brain regions that were preferentially associated with 272	

prosociality. 273	

 274	

Functional characterization of meta-analytic clusters 275	

The functional role of the prosociality brain regions were characterized based on the 276	

behavioral domains (BD)in the BrainMap database by using forward and reverse 277	

inference (Müller et al., 2013; Rottschy et al., 2012). In the forward inference, the 278	

functional profile was determined by identifying BD for which the probability of finding 279	

activation in the respective set of regions was significantly higher than the overall (a priori) 280	
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chance across the entire database. That is, we tested whether the conditional probability of 281	

activation given a particular BD, i.e., P(Activation|Domain), was higher than the baseline 282	

probability of activating the regions in question per se, namely, P(Activation). Significance 283	

was established using a binomial test using the standard 𝛼 = 0.05, corrected for multiple 284	

comparisons using the false discovery rate (FDR). In the reverse inference, the functional 285	

profile was determined by identifying the most likely BD, given activation in a particular set 286	

of regions. This likelihood P(Domain|Activation) can be derived from P(Activation|Domain) 287	

as well as P(Domain) and P(Activation) using Bayes' rule. Significance was then assessed 288	

using a chi-squared test (with FDR < 0.05 for correction of multiple comparisons). 289	

 290	

Anatomical labeling and data visualization 291	

The SPM Anatomy toolbox (www.fz-juelich.de/ime/spm_anatomy_toolbox, v.2.2b, Eickhoff 292	

et al., 2007), and MRIcron (http://people.cas.sc.edu/rorden/mricron/install.html/) were used 293	

for anatomical labeling. MRIcroGL 294	

(https://www.mccauslandcenter.sc.edu/mricrogl/home/) was used for brain 295	

visualizations (with default settings). 296	

 297	

Results 298	

Meta-analytic clusters for prosociality, empathy and mentalizing 299	

We first identified brain regions consistently activated by prosociality, empathy, and 300	

mentalizing. For prosociality, we searched both broad and general keywords, such as 301	

prosocial and prosocial behaviors, as well as more specific key terms describing single 302	

prosocial behaviors, such as generosity, altruism, charity, and donation. Moreover, to be able 303	

to include all appropriate and relevant behaviors, scientific paradigms known to 304	

experimentally investigate forms of prosocial behaviors were searched as well, like prisoner’s 305	



	

13	
	

dilemma and dictator game. For empathy and mentalizing, we searched key terms related to 306	

these psychological phenomena, such as empathic and theory of mind, similarly to previous 307	

work (Bzdok et al., 2012; Fan et al., 2011; Lamm et al., 2011). 308	

We observed that prosocial behaviors consistently activated the ventromedial PFC 309	

(vmPFC), left dorsolateral PFC (dlPFC), MCC, and dorsal PCC (dPCC)––a cluster between 310	

the PCC and precuneus (Fig. 1 & Tab. 1 & Tab S1). Replicating and extending previous 311	

findings, we observed that empathy consistently activated, among other regions, the bilateral 312	

AI, bilateral amygdala, and MCC (Fig. 2a & Tab. S2). Finally, we observed that mentalizing 313	

consistently activated, among other regions, the bilateral temporal cortex (TC) extending from 314	

the temporoparietal junction (TPJ) to the temporal pole (TP), PCC and mPFC (Fig. 2b & Tab. 315	

S3). 316	

 317	

 

Figure 1. Prosociality brain regions. ALE meta-analysis results showing brain regions consistently engaged 
by prosocial behaviors. Results were cluster-level familywise-error corrected for multiple comparisons (cFWE 
< .05). Depicted are Z values. dlPFC, dorsolateral prefrontal cortex; dPCC, dorsal posterior cingulate cortex; 
MCC, middle cingulate cortex; vmPFC, ventromedial prefrontal cortex; ALE, activation likelihood 
estimation. 
 318	
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Figure 2. Empathy and mentalizing brain regions. ALE meta-analyses results showing brain regions 
consistently engaged by empathy (a) and mentalizing (b). Results were cluster-level familywise-error corrected 
for multiple comparisons (cFWE < .05). Depicted are Z values. IPL, inferior parietal lobule; dmPFC, 
dorsomedial prefrontal cortex; MCC, middle cingulate cortex; AI, anterior insula; TPJ, temporoparietal 
junction; TP, temporal pole; vlPFC, ventrolateral prefrontal cortex; PCC, posterior cingulate cortex; dmPFC, 
dorsomedial prefrontal cortex; ALE, activation likelihood estimation. 
 319	

 

Table 1. Coordinates of prosociality brain regions. Meta-analytic results for brain regions associated with 
prosociality. Listed are clusters consistently activated for prosocial behaviors with MNI coordinates (in mm), Z 
scores at the peak, cluster size (in voxels), number of contributing experiments (with their percentage in 
parentheses based on the total number of experiments), and the contribution percentages of the most dominant 
experiments. vmPFC, ventrolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; MCC, middle 
cingulate cortex; dPCC, dorsal posterior cingulate cortex; BA, Brodmann area; anatomical assignment based on 
the Anatomy toolbox in parentheses; L, left; ALE, activation likelihood estimation; MNI, Montreal 
Neurological Institute; MDE, most dominant experiment; 2MDE, two most dominant experiments. 
 
 
Converging and diverging neural patterns between prosociality, empathy and 320	

mentalizing 321	

Once we identified the meta-analytic clusters consistently activated by prosociality, empathy, 322	

and mentalizing, we set out to test to which degree the neural patterns of prosociality 323	

 
 

Brain 
Regions 

 
Anatomical location BA 

 Coordinates  Z 
score 

Cluster 
Size 

Contributing 
experiments 

MDE 2MDE 
 x y z  

             vmPFC middle orbital gyrus 10 
(Fp2/s32) 

 0 46 -8  6.21 263 16 (23.9%) 11.2% 22.4% 

L dlPFC middle frontal gyrus 44  -40 18 40  4.71 90 11 (16.4%) 23.3% 43.0% 
MCC superior medial gyrus 32  0 22 42  3.42 108 12 (17.9%) 17.0% 32.8% 
dPCC  31  0 -52 36  3.51 119 9 (13.4%) 20.3% 39.3% 
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include brain regions that are part of the empathy and mentalizing meta-analytic maps. 324	

Given the hypothesis on the cognitive level that prosocial behaviors require socio-cognitive 325	

and empathic abilities, we should observe a certain degree of convergence. We ran two 326	

conjunction analyses between the meta-analytic map for prosociality and those for empathy 327	

and mentalizing identified in the previous analyses to estimate these neural convergences 328	

(Tab. S4). We observed that the MCC was commonly activated by prosociality and empathy 329	

(Fig. 3a), whereas the vmPFC and dPCC were commonly activated by prosociality and 330	

mentalizing (Fig. 3b). These results confirm on the neural level that some brain regions 331	

associated with empathic and socio-cognitive processes were engaged by prosocial behaviors 332	

as well. 333	

However, it is still an open question whether any of the meta-analytic clusters 334	

identified by the ALE analyses are preferentially activated by prosocial behaviors but neither 335	

empathy nor mentalizing. Therefore, we ran two contrast analyses between the meta-analytic 336	

map for prosociality and those for empathy and mentalizing. We observed that the left dlPFC, 337	

dPCC, and vmPFC were preferentially activated by prosocial behaviors as opposed to 338	

empathy (Fig. 3c & Tab. S5), whereas the MCC, AI, amygdala and inferior parietal lobule 339	

(IPL) were preferentially engaged by empathy as opposed to prosociality (Fig. 3c & Tab. S5). 340	

On the contrary, in the second contrast analysis between prosociality and mentalizing, we 341	

observed that the vmPFC, left dlPFC, and MCC were preferentially activated by prosocial 342	

behaviors (Fig. 3d & Tab. S5), while the TPJ, lateral PFC, and dorsal mPFC were 343	

preferentially engaged by mentalizing (Fig. 3d & Tab. S5). 344	
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Figure 3. Contrast and conjunction analyses. Conjunction analyses to identify brain regions commonly 
engaged by prosociality and empathy (a) and by prosociality and mentalizing (b). Contrast analyses to 
identify diverging neural patterns between prosociality (red) and empathy (green) (c) and between 
prosociality (red) and mentalizing (green) (d). MCC, middle cingulate cortex; vmPFC, ventromedial 
prefrontal cortex; dPCC, dorsal posterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; AI, anterior 
insula; dmPFC, dorsomedial prefrontal cortex; PCC, posterior cingulate cortex; OFC, orbitofrontal cortex; TPJ, 
posterior temporoparietal junction; TC, temporal cortex; vlPFC, ventrolateral prefrontal cortex; TP, temporal 
pole. 

 345	

These findings suggest that prosocial behaviors involve both socio-cognitive and 346	

empathic processes, recruiting some of the brain regions that are part of the mentalizing 347	

network (e.g., dPCC) and some of the brain regions that are part of the empathy 348	

network (e.g., MCC). However, our contrast analyses further revealed brain regions like 349	

the vmPFC and dlPFC that were more consistently engaged by prosocial behaviors than 350	

empathy and mentalizing, suggesting a preferential role for these brain regions in 351	

prosociality. 352	

 353	

Connectivity and co-activation analyses of the prosociality brain regions 354	
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We next set out to examine whether the brain regions underlying prosocial behaviors form an 355	

interrelated functional connectivity network. A good match between resting-state networks 356	

and task networks has been shown before, which has led to the hypothesis that 357	

functional networks interact with each other at rest with the same functional hierarchy 358	

that is observed during task performance (Cole et al., 2014; Smith et al., 2009). 359	

Specifically, resting-state functional connectivity maps onto a layout of activity patterns 360	

elicited by different cognitive domains (Raichle, 2015; Tavor et al., 2016). Hence, 361	

identifying the meta-analytic functional connectivity networks of a specific brain region 362	

during both rest and task, and analyzing their convergence help to robustly determine 363	

the consistent functional connectivity profile of that region. We employed two whole-364	

brain connectivity analyses, namely, task-free RSFC and task-based MACM across more than 365	

70 cognitive domains, to first determine the whole-brain functional connectivity layout of 366	

each prosociality brain region and then their exclusive convergence for prosociality as 367	

opposed to mentalizing or empathy. 368	

These analyses revealed a broad and converging functional connectivity profile for the 369	

prosociality brain regions (Fig. 4a-b & Tab. S6-7). In particular, the dPCC and vmPFC were 370	

similarly coupled to brain areas such as the TPJ, angular gyrus, and TC, whereas the MCC 371	

and dlPFC were more closely coupled with lateral parietal and prefrontal areas like the 372	

bilateral IPL and lateral PFC. Further, the vmPFC reveled functional connectivity with the 373	

striatum and orbitofrontal cortex, whereas the dlPFC was also functionally coupled with the 374	

PCC and TPJ. A conjunction of these connectivity profiles revealed a common functional 375	

connectivity network involving the four ALE meta-analytic brain regions (i.e., dlPFC, dPCC, 376	

MCC and vmPFC) with functional connectivity with cortical and subcortical regions, like the 377	

striatum, bilateral TC and IPL with overlaps in the TPJ (Fig. 4c & Tab. S8). 378	
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Figure 4. Functional connectivity and co-activation analyses. Results of task-free resting-state connectivity 
(a) and task-based co-activations (b) of the four meta-analytic clusters consistently engaged by prosocial 
behaviors. Conjunction analyses of the task-free and task-based functional connectivity profiles to identify the 
extended prosociality network (c). Common brain regions (yellow) of the two maps yielded by the exclusive 
conjunctions of the prosociality network and empathy (red), and the prosociality network and mentalizing 
(green) (d). dPCC, dorsal posterior cingulate cortex; dlPFC; dorsolateral prefrontal cortex; vmPFC, 
ventromedial prefrontal cortex; MCC, middle cingulate cortex; IPL, inferior parietal lobule; TC, temporal 
cortex; mPFC, medial prefrontal cortex; TPJ, temporoparietal junction; AI, anterior insula; p, prosociality 
network; e, empathy; m, mentalizing; ∧, logical ‘and’; ¬, logical negation; ∩, conjunction. 
 
 

Part of these common functional connectivity patterns includes regions previously 379	

observed to be associated with the mentalizing and empathy meta-analytic maps. Hence, to 380	

single out brain regions preferentially coupled with the meta-analytic activation patterns of 381	

prosocial behaviors, we further computed an exclusive conjunction analysis between this 382	

functional connectivity profile of prosociality and each of the mentalizing and empathy meta-383	

analytic maps (Fig. 4d). We observed that the striatum, bilateral dlPFC, and IPL were 384	

preferentially part of the functional connectivity profile of prosocial behaviors. 385	

 386	

Functional characterization of the prosociality brain regions 387	
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To gain insights into the different computational processes undertaken by the emerged 388	

meta-analytic neural patterns for prosociality, we implemented FD analyses using 389	

forward and reverse inferences, which characterized the functional roles of the 390	

identified prosociality brain regions. Functional roles were characterized using the BD in 391	

the BrainMap database, which describe categories (i.e., action, cognition, emotion, 392	

interception, and perception) and subcategories (e.g., reward, social cognition, language, 393	

working memory) of the mental operations likely isolated by the experimental contrasts stored 394	

in the database (Fox and Lancaster, 2002; Fox et al., 2014; Laird et al., 2009). We performed 395	

forward and reverse inferences to identify the experiments that engage a particular 396	

brain region, and then analyzed the experimental meta-data that describe the 397	

experimental settings employed in the studies (Bellucci et al., 2020; Camilleri et al., 398	

2018)—enabling statistical inference on the type of tasks that evoke activations in a 399	

certain brain region. 400	

Forward and reverse inferences provide converging results (Fig. 5a-b). In particular, 401	

we found that the dPCC was mainly associated with social cognition and the vmPFC with an 402	

affective domain involving fear, reward, and gustative perception, but also with cognitive 403	

functions such as reasoning and, like the dPCC but to a lesser extent, social cognition. Both 404	

the dlPFC and the MCC were associated with forms of cognitive control, but while the MCC 405	

was mainly related to a cognitive domain involving reasoning and semantics, the dlPFC, like 406	

the vmPFC, further yielded functional associations with an affective domain. However, the 407	

specific affective processes associated with the dlPFC were different from the ones associated 408	

with the vmPFC, suggesting different functional roles of these two brain regions in affective 409	

processing. These results indicate both similarities and differences in the functional roles of 410	

the prosociality brain regions. In particular, they refer to partly converging, but still distinct 411	

functional modules undertaking separate aspects of the processes underlying a prosocial act. 412	
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Figure 5. Functional decoding analyses. Forward (a) and reverse (b) functional decoding analyses to 
characterize the functional roles of the four meta-analytic clusters consistently engaged by prosocial behaviors. 
For forward functional decoding analyses, the likelihood ratios are depicted, whereas probability values are 
depicted for reverse functional decoding. dPCC, dorsal posterior cingulate cortex; dlPFC; dorsolateral 
prefrontal cortex; vmPFC, ventromedial prefrontal cortex; MCC, middle cingulate cortex. 
 
 413	

Discussion 414	

Prosocial behaviors refer to a wide range of acts aimed at benefitting others (e.g., helping, 415	

sharing, and caring). Psychological accounts posit that the psychological components of 416	

prosocial behaviors comprehend socio-cognitive abilities to understand the other’s goals, and 417	

empathic concern to be motivated to help. This hypothesis predicts the engagement of the 418	

mentalizing and empathy brain networks on the neural level. Here, we found partial evidence 419	

to support this hypothesis. In particular, brain regions consistently activated by prosocial 420	

behaviors do engage areas associated with mentalizing (dPCC) and empathy (MCC). 421	

However, we also observed other brain regions (dlPFC and vmPFC) preferentially activated 422	

by prosociality with functional connectivity with subcortical and lateral frontoparietal areas. 423	

 424	

Understanding another person’s goals 425	

To act prosocially, an agent has to understand the intentions and goals of another individual. 426	

Mentalizing is hence a prerequisite of prosocial behaviors. Socio-cognitive abilities enable the 427	

helping agent to realize whether and how particular actions help another to reach her goals 428	
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(Frith and Frith, 2003; Tomasello et al., 2005). Ontogenetic evidence indicates that only 429	

rudimental forms of prosociality are present in preschool children with non-fully developed 430	

mentalizing abilities and only in contexts that do not require inferences on complex goals 431	

(Brownell et al., 2006; Warneken and Tomasello, 2009a). 432	

Our results showed that prosociality consistently activated the dPCC, which was 433	

commonly recruited by prosociality and mentalizing, and was more strongly associated with 434	

prosociality than empathy. Connectivity analyses revealed that the dPCC was coupled to brain 435	

areas typically part of the mentalizing network (Buckner et al., 2008; Frith and Frith, 2003; 436	

Ingvar, 1974) and functional decoding pointed to a role in social cognition for this region. 437	

Given these results and previous evidence on its importance in perspective-taking (Cavanna 438	

and Trimble, 2006), the dPCC is a good candidate for a role in evaluations of another person’s 439	

goals in prosocial behaviors. A previous fMRI study found the dPCC to be recruited for 440	

intentional causality and prospective memory in a task where participants had to identify the 441	

intentions of consequential actions and bear in mind an intention to act (den Ouden et al., 442	

2005). With this respect, the dPCC might help an agent to prospectively embed her prosocial 443	

act into an action sequence that conforms to another individual’s goals. This hypothesis is also 444	

consistent with other functions attributed to the dPCC, such as visual imagery in episodic 445	

memory (Fletcher et al., 1995; Fletcher et al., 1996) and preparation and execution of 446	

intentionally guided actions (Astafiev et al., 2003). 447	

Contrary to the predictions of a previous qualitative review of the neural correlates of 448	

prosociality (Chakroff and Young, 2014), we did not observe any consistent activations in the 449	

TPJ. Unlike the dPCC, the TPJ has been associated with belief representations and with the 450	

justification of a belief (Koster-Hale et al., 2017; Young et al., 2010). Interestingly, the neural 451	

signal in the TPJ is predictive only of prosocial behaviors in situations of advantageous 452	

inequality (e.g., giving to those who are poorer but not wealthier than oneself) with no links to 453	

other prosocial behaviors (Morishima et al., 2012). Even though the TPJ was not 454	
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preferentially recruited by prosocial behaviors in our study, it was still part of the functional 455	

connectivity network of the prosociality brain regions, suggesting that it plays an essential 456	

role in supporting their underlying computations. Future work might consider clarifying 457	

the role of intentionality and perspective-taking in prosocial behaviors to provide better 458	

insights into the involvement of specific mentalizing brain regions. 459	

 460	

Motivated to help others 461	

Further, prosocial behaviors require a motivation to help another—arguably triggered by 462	

empathic concerns (Batson et al., 1987; Coke et al., 1978; Eisenberg et al., 1994). Individual 463	

differences in empathic skills (Bird and Viding, 2014; Blair, 2005; Decety and Jackson, 2004) 464	

have been linked to prosocial tendencies and prosocial learning, that is, learning when to 465	

benefit others (Lockwood et al., 2016; Lockwood et al., 2014). Importantly, vicarious distress 466	

is not enough to motivate prosocial behaviors if it is not accompanied by other-oriented 467	

empathic concerns (FeldmanHall et al., 2015). 468	

In our study, the only brain area consistently engaged by prosocial behaviors that 469	

overlapped with the empathy network was the MCC. Connectivity analyses revealed that this 470	

region was functionally coupled with lateral parietal and prefrontal areas generally part of a 471	

central-executive network (Bressler and Menon, 2010). Functional decoding analyses 472	

characterize the MCC as having a specific role in cognitive control. These results are in line 473	

with previous studies proposing cognitive-motor control as the core functional computation of 474	

this region (Botvinick et al., 2004; Guo et al., 2013; Hoffstaedter et al., 2014; Shackman et al., 475	

2011; Shenhav et al., 2014; Singer et al., 2004). As our results indicate that the MCC was 476	

preferentially related to a cognitive domain rather than an affective or social domain, the 477	

MCC might be a good candidate for representations of empathic concern, signaling the 478	

motivational component of empathy that prompts to take action to change the emotionally 479	

painful situation of another person’s needy condition. 480	



	

23	
	

Contrary to previous hypotheses, we found no associations between prosociality and 481	

the AI, which is considered a central region to empathic processes (Lamm et al., 2011; Lamm 482	

et al., 2017; Singer et al., 2004). These results might reflect the two different roles of the AI 483	

and MCC in empathy. Unlike some neuroimaging accounts that lump together the functions 484	

of the AI and MCC in a general role in “affect sharing” (Lamm et al., 2017), others suggest 485	

that the MCC represents a cognitive-evaluative form of empathy, whereas the AI represents 486	

an affective-perceptual form (Fan et al., 2011). Our results seem to confirm this functional 487	

distinction, suggesting that the cognitive form of empathy, in particular, its motivational 488	

component, might play a more central role in prosociality. 489	

 490	

Enacting prosocial behaviors 491	

Further, our contrast analyses demonstrated that the vmPFC and, in particular, the dlPFC were 492	

preferentially associated with prosociality as opposed to empathy and mentalizing. Our 493	

functional decoding analyses revealed that these regions were closely related to both cognitive 494	

and affective domains, suggesting that they integrate cognitive and affective signals relevant 495	

for prosocial behaviors. 496	

Functional connectivity analyses revealed functional coupling of the vmPFC with both 497	

mentalizing areas (e.g., TPJ) and subcortical brain regions (e.g., striatum). Functional 498	

decoding analyses suggested a role for the vmPFC in both socio-cognitive and affective 499	

processes. Given these results and previous evidence on its role in signaling outcome 500	

expectancies and behaviorally-relevant value information (Bellucci et al., 2019a; Bellucci et 501	

al., 2019b; Iigaya et al., 2019; Na et al., 2019), the vmPFC might be responsible for the 502	

integration of cognitive and affective signals in prosocial behaviors to prospectively evaluate 503	

actions and outcomes associated with a prosocial act. In particular, in concert with the 504	

striatum and TPJ, which have been shown to play a role in feelings of happiness during 505	

generous decisions (Park et al., 2017), the vmPFC might evaluate the positive consequences 506	
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that a prosocial act has for the helping agent. This resonates with a recent study indicating that 507	

individuals report the positive feelings following a prosocial act to be the second-most 508	

influential reason to behave prosocially (after "helping those in need" and before "feelings of 509	

empathy") (Sisco and Weber, 2019). 510	

Importantly, the dlPFC was the only brain area preferentially engaged by prosocial 511	

behaviors and activated by neither empathy nor mentalizing. Connectivity analyses linked the 512	

dlPFC with both cognitive control regions (e.g., parietal cortex) and mentalizing regions (e.g., 513	

PCC, TPJ). Functional decoding analyses linked the dlPFC to roles in both cognitive and 514	

affective processing. This configuration of activation patterns involving the dlPFC, PCC and 515	

parietal cortex is often observed when flexible behavioral adaptation to the current social 516	

interaction is required based on beliefs about the character and reputation of the interacting 517	

partner (Hackel et al., 2015; Igelström et al., 2016; Mende-Siedlecki et al., 2013). A recent 518	

neuroimaging study has demonstrated that neural signal in these regions is not only 519	

informative of the character traits of another person but also predicts an individual’s 520	

willingness to trust that person in a later interaction (Bellucci et al., 2019a). Hence, our results 521	

suggest that the recruitment of the dlPFC allows the tracking of another person’s behavior for 522	

inferences on her intentions and planning on the adequate course of actions. 523	

 524	

Limitations 525	

A couple of limitations have to be addressed. First, the neuroimaging literature, unlike 526	

psychological work, has not yet tackled the specific neural patterns underlying the different 527	

components of empathy (with the exception of some attempts (Fan et al., 2011)), leaving in 528	

particular the neural signatures of empathic concerns underspecified. Given its role in 529	

cognitive-motor control, we have here proposed that the MCC might signal behaviorally-530	

relevant motivational states, such as empathic concern (Kolling et al., 2016). However, as 531	

neuroimaging studies have so far primarily neglected this motivational component of empathy 532	
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and the BrainMap does not even contain a behavioral domain for motivation or empathic 533	

concern in its catalog, we were here unable to test this hypothesis. Second, we here aimed at 534	

identifying the common neural patterns underlying prosocial acts. However, it still remains an 535	

open question whether different types of prosocial acts recruit differing neural patterns. Given 536	

the few experiments for each of the prosocial acts here considered, future studies are needed 537	

to tackle this question. Moreover, we note that most investigations on prosociality use 538	

economic paradigms (see Supplementary list of studies for prosociality). For more robust 539	

and generalizable results, future studies might consider other types of paradigms, such 540	

as vignettes to test individuals’ tendency to prosocial behaviors in different contexts (like 541	

in studies on third-party punishment; Bellucci et al., 2020), virtual reality to more 542	

ecologically simulate situations requiring prosocial actions or longitudinal studies with 543	

chronic (as opposed to acute) manipulation of prosocial behaviors to investigate the 544	

effects of being prosocial on the brain (Lyubomirsky et al., 2005; Park et al., 2017). For 545	

these future studies, our results provide meta-analytic clusters that could be used as 546	

regions of interest to test specific hypotheses in investigations with other methods such 547	

as functional near-infrared spectroscopy and transcranial magnetic stimulation. Despite 548	

these limitations, we were able to reliably characterize the specific activation patterns, 549	

connectivity profile and functional roles of brain areas consistently activated by prosocial 550	

behaviors. 551	

 552	

Conclusions 553	

Taken together, we found a set of brain regions that were consistently activated by prosocial 554	

behaviors. These activation patterns partially overlapped with mentalizing and empathy brain 555	

regions, lending support to the hypothesis based on psychological research that socio-556	

cognitive and empathic abilities are central to prosociality. However, we also found that the 557	

vmPFC and, in particular, the dlPFC were preferentially recruited by prosocial acts, 558	
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suggesting that prosocial behaviors require the involvement of other important processes. 559	

Analyses on their functional connectivity profile and functional roles suggest that the vmPFC 560	

and dlPFC might be involved in valuation and planning of prosocial actions, respectively. 561	

These results clarify the role of mentalizing and empathic abilities in prosociality and 562	

provides useful insights into the neuropsychological processes underlying human social 563	

behaviors. For instance, they might help understand where and how things go awry in 564	

different neural and behavioral disorders such as psychopathy and antisocial behavior (Blair, 565	

2007). 566	

  567	
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